2.
$$\left(\frac{7.5 \times 1.8}{2}\right) \times 7.2 = 183.6 \text{ cm}^3$$

3.
$$8 \times 8 \times 8 = 512 \, \text{cm}^3$$

4.
$$\pi (3.75)^2 (24) = 1059.75 \text{ cm}^3$$
 C

5.
$$\sqrt{12}$$
 $\sqrt{12}$ \sqrt

$$8. \quad \sqrt{=\pi (2s)^2 (84.1)} = 207034.0 \quad \text{cm}^3$$

#9. Me
$$bx = \int_{9.5}^{9.5} V = 29.5 \times 18 \times 9.5$$

= 5044.5 ×12
So 12 ghan = 60 534 cm³

10.
$$V=\pi(s)^2(17.5)$$

= 1373.75 cm³ or 1373.75 ml.

[]
$$V = \pi(\pi)^{2}(80)$$

 $V = 12 308.8 \text{ cm}^{3}$
V= $(\frac{20 \times 14}{2}) \lambda 80$
 $V = 11,200 \text{ cm}^{3}$

12.
$$\sqrt{g} - \sqrt{g} = (45 \times 45 \times 45) - (\pi (17)^2 + 45)$$

91 125 - 40 835.7
50 289.3 cm³

13. outside inside
$$V=2.5\times2\times2$$
 $V=(3.14)(0.375)^2(12)$ $V=(0.5299)$ $V=(0.5299)$

$$\frac{10 \text{ m/s}}{0.5299 \text{ g/s}} = 18.87 \dots > \text{ so at most 18 bins}$$
fit into the outside bin.

12 a V= (18 × 55 122) = 21780 cm3 = 21.78L

V=55×22×12.6 = 15246 cm³ = 15.25 L

6) V= 6×6×.15 = 5.4 m³ b) 5.4 × \$110 = \$594

6. a) 4×3×1 or 2×6×1 or 2×2×3

b)
$$V = 40 \times 30 \times 25$$
 $V = 20 \times 60 \times 75$ $V = 20 \times 20 \times 75$ $V = 30,000 \text{ cm}^3$ $V = 30,000 \text{ cm}^3$

$$V = 20 \times 20 \times 75$$

= 30 00 0 cm³

c)
$$V_{\underline{q}} = \pi(5)^2(25)$$

= 1962.5
 $\times 12$
 $23,550cm^2$

30 000 - 23 550 = 6450 cm3 empty space

d) A cube gives the least. SA. So. 40×30×25 gives least SA. Leliosst to a (ube)