\qquad Blk \qquad

1. Find the units digit of 8^{1242}.
2. What is the units digit of $2^{63}, 2^{1568}$?
3. What is the units digit of 29^{57} ?
4. Which of the numbers from 1-9 has the same units digits when that number is taken to any exponent $x, x>0$.
5. Between the digits of a two-digit square, a third digit is inserted to create a three-digit square. Find the number of three-digit squares that can be obtained by this process.
6. If $x=2$ and $y=-3$, find the value of $x^{3}-y^{3}$.
7. If $a=2, b=3$, and $c=4$, find the value of $b c^{a}$.
8. Find the value of $-2^{2}-3^{2}$.
9. If $x=2$ and $y=3$, find $-x^{2}+(-y)^{3}$.
10. When the number 4 is squared and then doubled, what must be added to the answer to have a sum of 7^{2} ?
11. a) If the population of rabbits triples every year, how many rabbits will there be in 5 years if there are currently 2 ?
b) How many in 10 years?
c) Create a formula to calculate the population of rabbits in n years.
12. If a bacteria population starts at 100 quadruples every hour, how many bacteria will there be in 6 hours?
13. Britney Gallivan was the first person to fold a piece of paper in half 12 times, something which had previously been believed to be impossible. How many layers of paper would be in that stack?
14. Given that $2^{x}+2^{x}+2^{x}+2^{x}=128$, what is the value of $(x+1)(x-1)$?
15. What is the remainder when 2^{133} is divided by 5 ?
16. Aaron gave Levi the combination to his lock as a mystery to solve. There are three whole numbers in the locker combination. Aaron gave Levi the following clues.

- Each number is greater than 0 and less than 40 .
- The first number a a prime number greater than 31
- The second number has nine distinct positive integer factors
- If you take the product of the square of 3 and the cube of 2 , and then reverse the digits, you have the third number.

What is the sum of the three numbers in the combination?

```
Answers:
1. 4
2. 8,6
3. 9
4. \(1,5,6\)
5. Three numbers with this property.
6. 35
7. 48
8. -13
9. -31
10. 17
11. a) 486 b) 118098 c ) \(P=2 \times 3^{n}\)
12. 409600
13. 4096
14. 24
15. 2
16. 100
```

