Exponent laws

Introducing the Exponent Laws
Mulyiplying Powers:

$$
\begin{aligned}
& 2^{3} \times 2^{2}=(2 \times 2 \times 2) \times(2 \times 2)=2^{5} \\
& 4^{4} \times 4^{3}=(4 \times 4 \times 4 \times 4) \times(4 \times 4 \times 4)=4^{7} \\
& 5^{2} \times 2^{2}=(5 \times 5) \times(2 \times 2)=10^{2} \quad 4^{2} \times 3^{3}=
\end{aligned}
$$

1. Simplify if possible.
a) $2^{4} \times 2^{3}=\eta^{7}$
b) $5^{8} \times 5^{1} \times 5^{6}=5^{15}$

Dividing Powers:

$$
\begin{aligned}
& \frac{2^{5}}{2^{3}}=\frac{2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2}=2^{2} \\
& \frac{3^{4}}{5^{2}}=\frac{3 \times 3 \times 3 \times 3}{5 \times 5} \text { cannot simplify }
\end{aligned}
$$

Multiplying Powers Rule:
When multiplying powers and you have the same base, add the exponents. $x^{n} \cdot x^{m}=x^{n+m}$
2. Simplify if possible.
a) $\frac{4^{3}}{4^{2}}=4^{3-2}=4$
b) $\frac{10^{50}}{10^{46}}=10^{50-46}$
c) $\frac{3^{5} \times 3^{15}}{3^{10}}=\frac{3^{20}}{3^{10}}=3^{10}$
d) $\frac{7^{6}}{7^{6}}=7^{6-6}=7^{0}$
e) $\frac{4^{3}}{4^{5}}=4^{3-5}=4^{-2}$
3. Use examples 2 d and 2 e to determine the following rules:

$$
\frac{5^{12}}{5^{12}}=5^{0}
$$

$$
\frac{4 \times 4 \times 4}{4 \times 4 \times 4 \times 4 \times 4}=\frac{1}{4^{2}}
$$

Zero exponent law:

$$
\left.x^{0}=1 \quad \begin{array}{l|l}
(5 \times 2)^{0}=1 & \text { Negative exponent law: } \\
-\left(5^{0}\right)=-1
\end{array} \right\rvert\, x^{-n}=\frac{1}{x^{n}}
$$

Scientific Notation:
4. Convert to scientific notation:

Distance from earth to the sun is about $93000000 \mathrm{mi} .9 .3 \times 10^{7}$
Mass of a hydrogen atom is about $000000000000000000000000017 \mathrm{~g} .1 .7 \times 10^{-25}$
5. Convert to decimal notation:

$$
6.402 \times 10^{14}=640200000000000 \quad 5 \times 10^{-8}=0.00000065
$$

6. Multiply and divide in scientific notation:
a) $\left(1.12 \times 10^{-8}\right)\left(5 \times 10^{-7}\right)=5.6 \times 10^{-15}$
b) $\left(9.1 \times 10^{-17}\right)\left(8.2 \times 10^{3}\right)=74.62 \times 10^{-14}$
c) $\frac{(4.2(\overbrace{10^{5}}^{\left(2.1 \times\left(0^{-8}\right)\right.})}{\overbrace{10^{++8}}^{13}}=2 \times 10^{13}$
d) $\frac{\left(1.1 \times 10^{-4}\right)}{\left(2 \times 10^{-7}\right)}$

$$
\begin{aligned}
& 74.62 \times 10 \\
& \left(7.462 \times 10^{\prime}\right) \times 10^{-14}=7.462 \times 10^{-13}
\end{aligned}
$$

$-4 r^{+7}$

$$
\begin{aligned}
& 0.55 \times 10^{3} \\
& \left(5.5 \times 10^{-1}\right) \times 10^{3}=5.5 \times 10^{2}
\end{aligned}
$$

Assignment:
Simplify ${ }_{\text {1. }}$ (a) $2^{2} \times 2^{2}=2^{4}$
(b) $3^{2} \times 2^{3}=3^{2} \times 2^{3}$
(c) $5^{7} \times 5^{7}=5^{14}$
(d) $6^{4} 6^{0} 6^{0}=b^{4}$
(e) $4^{3} \times 6^{5} \times 4^{2}=4^{5} \times 6^{5}$
(f) $3^{3} 3^{-3}=3^{0}=1$
(g) $7^{4} 7^{7} 7^{-9} \quad 7^{2}$

Simplify
2. (a) $\frac{3^{5}}{3^{4}}=3$

Evaluate

3. (a) $10^{6}=1000000$
(b) $3^{5}=243$
(c) $21^{0}=1$
(d) $71^{1}=71$
(e) $0^{1}=0$
(f) $1^{0}+2^{0}+3^{0}+4^{0}+5^{0}=5$
(g) $4^{2}+9^{2}-3^{2}$
$16+81-9=88$
4. If you have $0<10^{n}<1000000000$. What is the max value of 3^{-n} ?
$n<9$
$n=-\infty<n_{0}$ limit
5. Multiply. Leave answer in scientific notation.
a) $\left(2.3 \times 10^{6}\right)\left(4.2 \times 10^{-11}\right) \underline{9.66 \times 10^{-5}}$
b) $\begin{aligned}\left(6.5 \times 10^{3}\right)\left(5.2 \times 10^{-8}\right) & =33.8 \times 10^{-5} \\ & =(3.38 \times 10) \times 10^{-5}=3.38 \times 10^{-4}\end{aligned}$
c) $\begin{array}{r}\left(2.34 \times 10^{-8}\right)\left(5.7 \times 10^{-4}\right)=13.338 \times 10^{-12} \\ \left(1.3338 \times 10 \times 10^{-12}\right.\end{array}$
d) $\left(3.26 \times 10^{-6}\right)\left(8.2 \times 10^{9}\right)=26.732 \times 10^{3}$
6. Divide. Leave answer in scientific notation. $=1.3338 \times 10^{-11}$
$=26.732 \times 10^{2}$
$(2.6732 \times 10) \times 10^{3}=2.6732 \times 10^{4}$
a) $\frac{8.5 \times 10^{8}}{3.4 \times 10^{5}}=2.5 \times 10^{3}$
b) $\frac{5.1 \times 10^{6}}{3.4 \times 10^{3}}=1.5 \times 10^{3}$
c) $\begin{aligned} \frac{4.0 \times 10^{-6}}{8.0 \times 10^{-3}}= & 0.5 \times 10^{-3} \\ & \left(5.0 \times 10^{-1}\right) \times 10^{-3}=5.0 \times 10^{-4}\end{aligned}$
d) $\frac{7.5 \times 10^{-9}}{2.5 \times 10^{-4}}=3 \times 10^{-5}$
7. Calculate. Leave answer in scientific notation.
a) $\frac{\left(6.1 \times 10^{4}\right)\left(7.2 \times 10^{-6}\right)}{9.8 \times 10^{-4}}=4.48 \times 10^{2}$
b) $\frac{\left(8.05 \times 10^{-11}\right)\left(\sqrt{\left(5.9 \times 10^{7}\right)}\right.}{3.1 \times 10^{14}}=15.32 \times 10^{-18}$ $(1.532 \times 10) \times 10^{-18}=1.532 \times 10^{-17}$
8. The distance light travels in 100 yr is approximately $5.87 \times 10^{14} \mathrm{mi} \div 100=5.87 \times 10^{12} / \mathrm{yr}$
a) How far does light travel in 13 weeks? $1 / 40$ of a gear $5.87 \times 10^{12} \div 4=1.4675 \times 10^{12}$
b) Calculate the number of kilometers light travels in 13 weeks given 1 mile $=1.609$ kilometers.

$$
1.4675 \times 10^{14} \times 1.609=2.361 \times 10^{14}
$$

Challenge: Compare 8×10^{-90} and 9×10^{-91}. Which is the larger value? How much larger?
Write scientific notation for the difference

$$
\begin{aligned}
& \begin{array}{l}
89 \text { zeros :7 } 10 \\
\\
= \\
=0.000 \ldots .00080 \\
0.000 \ldots 00009 \\
\end{array} \quad=7.1 \times 10^{-90}
\end{aligned}
$$

