Exponent laws

Introducing the Exponent Laws

Multiplying Powers Rule: When multiplying powers and you have the same base, add the exponents. $\chi^n \cdot \chi^m = \chi^{n+m}$

Multiplying Powers:

$$2^{3} \times 2^{2} = (2 \times 2 \times 2) \times (2 \times 2) = 2$$

$$4^{4} \times 4^{3} = (4 \times 4 \times 4 \times 4) \times (4 \times 4 \times 4) \approx 4$$

$$5^2 \times 2^2 = (5 \times 5) \times (2 \times 2) = 10^2$$
 $4^2 \times 3^3 =$

a)
$$2^4 \times 2^3 = 2^7$$

1. Simplify if possible.
a)
$$2^4 \times 2^3 = 2^7$$
 b) $5^8 \times 5 \times 5^6 = 5^{15}$

$$c)6^{5} \times 2 \times 6^{4} = 6^{9} \times 2$$

Dividing Powers:

$$\frac{2^{5}}{2^{3}} = \frac{\cancel{\cancel{4}} \times \cancel{\cancel{4}} \times \cancel{\cancel{4}} \times \cancel{\cancel{4}} \times \cancel{\cancel{4}} \times \cancel{\cancel{4}}}{\cancel{\cancel{4}} \times \cancel{\cancel{4}} \times \cancel{\cancel{4}}} = \cancel{\cancel{2}^{2}}$$

$$\frac{3^4}{5^2} = \frac{3 \times 3 \times 3 \times 3}{5 \times 5}$$
 cannot simplify

Dividing Powers Rule:

When bases are the same, subtract exponents
$$\frac{x^m}{x^n} = x^{m-n}$$

2. Simplify if possible

a)
$$\frac{4^3}{4^2} = 4^{3-2} = 4$$

b)
$$\frac{10^{50}}{10^{46}} = 15^{50-46}$$

c)
$$\frac{3^5 \times 3^{15}}{3^{10}} = \frac{3^{20}}{3^{10}} = 3^{10}$$
 d) $\frac{7^6}{7^6} = 7^{66} = 7$

a)
$$\frac{4^3}{4^2} = \frac{4^{3-2}}{4^2} = \frac{4}{4}$$
 b) $\frac{10^{50}}{10^{46}} = \frac{10^{50-44}}{10^4}$ c) $\frac{3^5 \times 3^{15}}{3^{10}} = \frac{3^{20}}{3^{10}} = 3^{10}$ d) $\frac{7^6}{7^6} = 7^{6-2} = 7^{6}$ e) $\frac{4^3}{4^5} = \frac{4^{3-5}}{4^5} = \frac{4^{3$

$$\chi^{\circ} = \begin{pmatrix} 5/2 \\ -5/2 \end{pmatrix} = -$$

Negative exponent law:

$$\chi^{-n} = \frac{1}{\chi^n}$$

Scientific Notation:

4. Convert to scientific notation:

Distance from earth to the sun is about 93 000 000 mi.

Mass of a hydrogen atom is about 0.00000000000000000000000000017 g.

5. Convert to decimal notation:

6. Multiply and divide in scientific notation:

a)
$$(1.12 \times 10^{-8})(5 \times 10^{-7}) = 5.6 \times 10^{-7}$$

c)
$$\frac{(4.2 \times 10^5)}{(2.1 \times 10^{-8})}$$
 2×10^{13}

b)
$$(9.1 \times 10^{-17})(8.2 \times 10^{3}) = 74.62 \times 10^{3} \times 10^{-14} = 7.462 \times 10^{3}$$

(7.462 × 10) × 10 = 7.462

$$(5.5 \times 10^{-1}) \times 10^{3} = 5.5 \times 10^{2}$$

$$\frac{1}{1}$$
 (a) $2^2 \times 2^2 = 2^1$

(a)
$$2^2 \times 2^2 = 2^4$$

(b)
$$\frac{7^2}{3^4} = 1$$

(b)
$$\frac{7^2}{7^2} =$$

(c)
$$5^7 \times 5^7 = 5^{19}$$

(e)
$$4^3 \times 6^5 \times 4^2 = 4^5 \times 6^5$$

(f)
$$3^33^{-3} = 3^{\circ} =$$

(f)
$$3^33^{-3} = 3^{\circ} =$$

(f)
$$3^33^{-3} = 3^6 =$$

$$(c) \frac{8^7}{8^7} = 8^{-6} \times \frac{8^7}{8^7}$$

(e)
$$\frac{1}{145802}$$

(f)
$$\frac{6^{-5}}{6^{-8}} = 6^{-5}\tau^{t}$$

(e)
$$0^1 = 0$$

(f)
$$1^0 + 2^0 + 3^0 + 4^0 + 5^0 = 5^0$$

Assignment: Similar 1. (a)
$$2^2 \times 2^2 = 2^4$$
 2. (a) $\frac{3^5}{3^4} = 3$ 3. (a) $10^6 = 1000000$ (b) $3^2 \times 2^3 = 3^1 \times 2^3$ (b) $\frac{7^2}{7^2} = 1$ (c) $\frac{8^1}{8^7} = 8^{-1} \times 10^{-1}$ (d) $6^4 6^0 6^0 = 6^4$ (e) $4^3 \times 6^5 \times 4^2 = 14^5 \times 10^5$ (f) $\frac{3^2}{3^{-2}} = 3^4$ (e) $\frac{1738293}{145802} = 1$ (f) $1^0 + 2^0 + 3^0 + 4^0 + 5^0 = 5$ (g) $4^2 + 9^2 - 3^2$ (g) $7^4 7^7 7^{-9}$ 7^2 (f) $\frac{6^{-5}}{6^{-8}} = 6^{-5} \times 10^{-5}$ (g) $4^2 + 9^2 - 3^2$ (e) $4^2 + 9^2 - 3^2$ (f) $4^2 + 9^2 - 3^2$ (g) $4^2 + 9^2 - 3^2$ (h) $4^2 + 9$

4. If you have $0 < 10^{n} < 10000000000$. What is the max value of 3^{-n} ?

5. Multiply. Leave answer in scientific notation.

a)
$$(2.3 \times 10^6)(4.2 \times 10^{-11}) \frac{9.66 \times 10^{-5}}{10^{-5}}$$

a)
$$(2.3 \times 10^6)(4.2 \times 10^{-11}) \frac{9.66 \times 10^{-5}}{9.66 \times 10^{-5}}$$
 b) $(6.5 \times 10^3)(5.2 \times 10^{-8}) = 33.8 \times 10^{-5} = (3.38 \times 10) \times 10^{-5} = 3.38 \times 10^{-5}$ c) $(2.34 \times 10^{-8})(5.7 \times 10^{-4}) = 13.338 \times 10^{-12}$ d) $(3.26 \times 10^{-6})(8.2 \times 10^{9}) = 26.732 \times 10^{3}$ (1.3338 × 19) × 10⁻¹² (2.6732 × 10) × 10³ = 2.6732 × 10⁴

c)
$$(2.34 \times 10^{-8})(5.7 \times 10^{-4}) = 13,338 \times 10^{-18}$$

d)
$$(3.26 \times 10^{-6})(8.2 \times 10^{9}) = 26.732 \times 10^{3}$$

b)
$$\frac{5.1 \times 10^6}{10^6} = 1.5 \times 10^3$$

a)
$$\frac{8.5 \times 10^8}{3.4 \times 10^5} = \frac{2.5 \times 10^3}{10^3}$$

b)
$$\frac{5.1 \times 10^6}{3.4 \times 10^3} = \frac{[.5 \times 10^3]}{[.5 \times 10^3]}$$

c)
$$\frac{4.0 \times 10^{-6}}{8.0 \times 10^{-3}} = 0.5 \times 10^{-3}$$

 $(5.0 \times 10^{-1}) \times 10^{-3} = 5.0 \times 10^{-4}$
d) $\frac{7.5 \times 10^{-9}}{2.5 \times 10^{-4}} = 3 \times 10^{-5}$

d)
$$\frac{7.5 \times 10^{-9}}{2.5 \times 10^{-4}} = 3 \times 10^{-5}$$

7. Calculate. Leave answer in scientific notation.

a)
$$\frac{(6.1 \times 10^4)(7.2 \times 10^{-6})}{9.8 \times 10^{-4}} = 44.48 \times 10^{-2}$$

ulate. Leave answer in scientific notation.

a)
$$\frac{(6.1 \times 10^4)(7.2 \times 10^{-6})}{9.8 \times 10^{-4}} = 44.48 \times 10^{2}$$

b) $\frac{(8.05 \times 10^{-11})(5.9 \times 10^{7})}{3.1 \times 10^{14}} = 15.32 \times 10^{-18}$

(1.532 × 10) × 10⁻¹⁸ = 1.532 × 10

8. The distance light travels in 100 yr is approximately 5.87 x 10^{14} mi. $-100 = 5.87 \times 10^{12}$ /gr

a) How far does light travel in 13 weeks? 1/4 of a year 5.87×10^{12} : $4 = 1.4675 \times 10^{12}$

b) Calculate the number of kilometers light travels in 13 weeks given 1 mile = 1.609 kilometers.

Challenge: Compare 8 x 10⁻⁹⁰ and 9 x 10⁻⁹¹. Which is the larger value? How much larger? Write scientific notation for the difference