$$
\left.\begin{array}{l}
4\left(y=-\frac{3}{4} x-3\right. \\
4 y=-3 x-12 \\
3 x+4 y+12=0
\end{array}\right\} \begin{gathered}
\text { converting } \\
\text { to } \\
\text { geneal } \\
\text { form }
\end{gathered}
$$

$$
\text { p } 392 \text { \#10 }
$$

a) through $(7,5)$ parallel to $\underbrace{x-a x ; 5}$

b) peep to x-axis

11. Slope of $R(4,3)$ and $S(1,5)=\frac{5-3}{1-4}=\frac{2}{-3}$

$$
P(n, 4) \quad Q(1,-2)
$$

parallel

$$
\begin{aligned}
& \frac{-2-4}{1-n}=\frac{-2}{3} \\
& \frac{-6}{1-n}=\frac{-2}{3} \\
& -2(1-n)=-18 \\
& -2^{2}+2 n=-18+2 \\
& 2 n=-16 \\
& n=-8
\end{aligned}
$$

per

$$
\begin{aligned}
\frac{-2-4}{1-n} & =\frac{3}{2} \\
\frac{-6}{1-n} & =\frac{3}{2} \\
3(1-n) & =-12 \\
3^{-3-3 n} & =-12^{-3} \\
-3 n & =-15 \\
n & =5
\end{aligned}
$$

Slope-intercept form $\quad y=m x+b$

1) Easy to write equation when know slope, y-int
2) Easy to write equation when Know slope, y-int
3) Easy to graph. (plot y-int, Count slope)
4) Applications.

General Form $A x+B y+C=0<$ no fractions

1) Converting between forms
2) intercepts
 Axterm positive

3) Graph - by converting into $y=m x+b$

- using intercepts

4) Applications

Slope-point form $y-y_{1}=m\left(x-x_{1}\right)<u$ used to find the equation of a line

1) Giver slope and a point, find equation
2) Given two points. Find equation

Parallel and perpendicular lines

1) Find equation given.... parallel to, perpto.
2) find " n " given paralla/per.

$$
\frac{1}{3}, \frac{n}{9} \quad \frac{n}{9}=\frac{-3}{1}
$$

$$
n=-27
$$

$$
\begin{aligned}
2 x-7 & =0 \\
\frac{2 x}{2} & =\frac{7}{2} \\
x & =3.5
\end{aligned}
$$

Special cases

Vertical lines: $\left\{\begin{array}{c}x=k \\ x-k=0\end{array}\right\}$ with slope undefined
((1,7)) Horizontal lines: $\left\{\begin{array}{l}y=k \\ y-k=0\end{array}\right\}$ with slope zero
\rightarrow Whark on practice Test on page 399
$x=3 \rightarrow$ Work on practice Test on page 399
Go to Chapter 7 review on page 396 and do questions that you struggled on in your practice test

* Suggestions $\# 5,6,9,11,12,14,15$
\square

