9.3 Quadratic Inequalities in Two Variables

Example 1
Graph $y>(x-4)^{2}-2$

$$
\begin{gathered}
y=(x-4)^{2}-2 \\
v(4,-2) \\
0>(0-4)^{2}-2 \\
0>16-3 \\
0>14
\end{gathered}
$$

Example 2

$$
\begin{aligned}
& \text { Graph } y \leq-2 x^{2}+4 x+1 \\
& y \leq \underbrace{-2\left(x^{2}-2 x+1\right)}_{-2}+1+2 \\
& y \leq-2(x-1)^{2}+3 x x^{2} \\
& 0 \leq-2(1)^{2}+4(1)+1 \\
& 0 \leq 0 \leq 3
\end{aligned}
$$

How is the solution of a quadratic inequality in two variables different from a quadratic inequality in one variable
The solution of a quadratic inequality in 2 variables is a set of ordered pairs that can be represented as a region on a coordinate plane. The solution of a quadratic inequality in 1 variable is a set of numbers that can be represented on a number line.

Example 3

A satellite dish is 60 cm in diameter and 20 cm deep. The dish has a parabolic cross section. Locating the vertex at the origin
a) determine the equation which represents the shape of the dish

$$
\begin{aligned}
& y=a(x-p)^{2}+q \\
& y=a x^{2} \\
& 20=a(30)^{2} \\
& 20=900 a \\
& 2 / 90=a
\end{aligned}
$$

b) From what region can the dish receive a signal?

$$
y \geqslant 2 / 90 x^{2}
$$

Example 4
Write an inequality for the following graph

$$
\begin{aligned}
& y=a(x-2)^{2}+4 \\
& 2=a(3-2)^{2}+4 \\
& 2=a+4 \\
& -2=a
\end{aligned}
$$

Write an inequality for the following graph

$$
\begin{aligned}
& 0=-2(x-2)^{2}+4 \\
& -4=-2(x-2)^{2} \\
& 2=(x-2)^{2} \\
& \pm \sqrt{2}=x-2 \\
& 2 \pm \sqrt{2}=x
\end{aligned}
$$

Write the domain?

$$
2=\sqrt{2}<x<2+\sqrt{2}
$$

Example 5

A rope, of diameter ' d ' $c m$, can hold up to ' M ' pounds, modelled by the inequality $M \leq 200(d-1)^{2}$. Graph the inequality

Assignment p496 \#1ac,3, 4ac,5ac,6ac,8,9,11a,13a

* Review Quiz next class *

