There are two methods to solve quadratic inequalities in one variable.

1. By graphing
2. By finding the roots and using test points

Method 1: Solve by graphing

Ex. 1 Solve $x^{2}-10 x+16 \leq 0$

$$
\begin{gathered}
(x-2)(x-8) \leq 0 \\
x=2,8
\end{gathered}
$$

Graph $y=x^{2}-10 x+16$

$$
\begin{gathered}
y=\left(x^{2}-10 x+25\right)+16-25 \\
y=(x-5)^{2}-9
\end{gathered}
$$

Which part is below the x-axis? [y-values are negative]

$$
2 \leq x \leq 8
$$

Ex. 2 Given the graph $y=x^{2}-6 x+9$, what is the solution to:

a) $x^{2}-6 x+9 \geq 0$
$x \in R$
b) $x^{2}-6 x+9>0$
$x \in R, x \neq 3$
c) $x^{2}-6 x+9 \leq 0$

$$
x=3
$$

d) $x^{2}-6 x+9<0$
no solution

Method 2: Solve by finding roots and using test points

Ex. 3 Solve $2 x^{2}+x \leq 6$

$$
\begin{aligned}
& (2 x-3)(x+2) \leq 0 \quad \text { (3)Place roots on } \# \text { lime }+ \text { test regions. } \\
& x=3 / 2 \quad x=-2
\end{aligned} \quad \text { (Sketch parabola) }
$$

$2(-3)^{2}+(-3)-6 \leq 0$
B) 0
c) 2
$2(2)^{2}+2-6 \leq 0$
$\begin{aligned} 18-3-6 & \leq 0 \quad-6 \\ 9 & \leq 0\end{aligned}$
$8+2-6 \leq 0$

$$
\begin{aligned}
2(-3)^{2}+(-3)-6 & \leq 0 & -1 \\
18-3-6 & \leq 0 & -6 \leq 0 \\
9 & &
\end{aligned}
$$

-v

$$
\begin{aligned}
2(2)^{2}+2-6 & \leq 0 \\
8+2-6 & \leq 0 \\
4 & \leq 0 x
\end{aligned}
$$

$$
-2 \leq x \leq 3 / 2
$$

Ex. 4 Solve $-x^{2}+3 x+10<0$

$$
x^{2}-3 x=10>0
$$

$$
\begin{gathered}
-\left(x^{2}-3 x-10\right)<0 \\
-(x-5)(x+2)<0 \\
x=5,-2
\end{gathered}
$$

A) -3
B) 0
c) 6

$$
x<-2 \text { or } x>5
$$

$$
\begin{array}{c|c|c}
\text { A) }-3 & \text { B) } 0 & \begin{array}{c}
\text { c) } 6 \\
-(-3)^{2}+3(-3)+10<0 \\
-9-9+10<0 \\
-8<0 \\
\text { True }
\end{array} \\
10<0 & -(6)^{2}+3(6)+10<0 \\
-36+18+10<0 \\
\text { True }
\end{array}
$$

Ex. 5 Solve $x^{2}-4 x>10$

$$
\begin{aligned}
& x=\frac{4 \pm \sqrt{16-4(1)(-10}}{2} \\
& x=\frac{\frac{4 \pm \sqrt{56}}{2}}{2} \\
& x=\frac{4 \pm 2 \sqrt{14}}{x 1} \\
& x=2 \pm \sqrt{14}>-1.74
\end{aligned}
$$

$$
\begin{gathered}
\text { A) }-2 \\
(-2)^{2}-4(-2)-10>0 \\
4+8-10>0
\end{gathered} \left\lvert\, \begin{aligned}
& \text { B) } 0 \\
& -10>0 \\
& x<2-\sqrt{14} \text { or } x>2+\sqrt{14}
\end{aligned}\right.
$$

Ex. 6 Solve $x^{2}-4 x>-10$

$$
x=\frac{\frac{4 \pm \sqrt{16-4(1)(-10}}{2}=\frac{4 \pm \sqrt{-24}}{2} \quad \begin{array}{l}
b^{2}-4 a c<0 \text { so } \\
\text { no real roots! } \\
x \neq 0
\end{array} \quad x \in R}{}
$$

note... 1) if $b^{2}-4 a c=0$, then one root on y-axis
2) if $b^{2}-4 a c<0$, then no roots... careful, you will need to sketch to determine if $x \in R$ or there is no solution-

4d) answed

$$
-2-\frac{\sqrt{6}}{2} \leq x \leq-2+\frac{\sqrt{6}}{2}
$$

