Chapter 9: Linear and Quadratic Inequalities

9.1 Linear Inequalities in Two Variables

Graph $\underbrace{4 x+2 y=10}$	
Each (x, y) pair on the line is a solution to the equation.	$4 x+2 y \leq 10$ Each (x, y) pair the line is a solution to the inequality

$$
\begin{aligned}
& \frac{2 y}{2}=\frac{-4 x}{2}+\frac{10}{2} \\
& y=-\frac{2}{1} x+5 \\
& 4(0)+2(0) \leqslant 10 \\
& 0 \leq 10 \\
& \text { true } \\
& 4(5)+2(2) \leq 10 \\
& 20+4 \leqslant 10 \\
& 24 \text { 上 } 10 \\
& \text { Fats }
\end{aligned}
$$

In general, to graph an inequality:

1) Graph the boundary line (equality)
2) -If \geq or \leq, then solid line (points on the line are included) -If $>$ or $<$, then dashed line (the points on the line are not included)
3) Test a point not on the boundary line and shade the region that satisfies the inequality. (Origin is the easiest choice)

Example:

Graph $4 x-5 y<10$

$$
\begin{aligned}
4 x-5 y & =10 \\
-\frac{5 y}{-55} & =\frac{-4 x}{-5}+\frac{10}{-5} \\
y & =4 / 5 x-2
\end{aligned}
$$

Graph $4 x-$ - $\mathbf{y}<10$

$$
\begin{aligned}
4 x-5 y & =10 \\
\frac{-5 y}{-5} & =\frac{-4}{-5}+\frac{10}{-5} \\
y & =4 / 5 x-2 \\
4(0)-5(0) & <10 \\
0 & <10
\end{aligned}
$$

Example:
a) Given the graph, determine its equation.

$y=2 / 3 x+1$
$y]^{2 / 3 x+1}$
$0 \square^{2} / 3(0)+1$
0 Kl
b) Which of the following points satisfy the inequality?
$(6,2) \vee$
$(0,0) \checkmark$
$(-2,3) x$

Given the graph, determine its equation.

$$
\begin{aligned}
& 3 y \leq-2 x \\
& 3 y+2 x \leq 0
\end{aligned}
$$

Example.
A mosaic is made of tile and stone. If the budget for the mosaic is $\$ 180$, and the tiles cost $\$ 4.00 / \mathrm{ft}^{2}$, while stone cost $\$ 4.50 / \mathrm{kg}$, draw a graph which represents all possible combinations of stone and tiles.

$$
\begin{array}{r|r}
4 t+4.5 s & \leq 180 \\
t & s \\
\hline 0 & 40 \\
\hline 45 & 0
\end{array} \quad \begin{gathered}
4 s=180 \\
\\
\end{gathered}
$$

*-the shaded region represents all (s, t) Combinations less than $\$ 180$

- the line represents all (s, t) combinations that equal $\$ 180$ (\because a Solid line)

Example:
A smartphone plan charges 10 cents/ min and each megabyte of data costs 10 cents. Another plan allows unlimited talk and data for $\$ 50 /$ month. Under which circumstances is each plan better?
$m=$ minutes
$M B=$ megabytes.

Plan A
Plan B

Any ($m, M B$) combination in the shaded region indicates that plan A. is better.

