1. A cylindrical tube is removed from a cube.

How much volume of the cube is left?

$S A=1600 \mathrm{~m}^{2} \times 6=9600 \mathrm{~m}^{2}$
$9600-2 \pi(15)^{2}+2 \pi r h$

$$
\begin{aligned}
V_{\text {CUBE }} & -V_{\text {CYLINDER }} \\
64000 & -\pi(15)^{2}(40) \\
64000 & -28260 \\
& 35740 \mathrm{~m}^{3}
\end{aligned}
$$

Kenu puts hot chocolate in a thermos that is 22 cm tall and has a diameter of 10 cm .
The inside of the thermos has a diameter of 7 cm .
How much material was used to make the thermos?
$V_{B G G}-V_{\text {Small }}$

What is the capacity of the thermos?

3. Laura has to pack 60 small boxes into 1 large carton.

Each small box is $30 \mathrm{~cm} \times 26 \mathrm{~cm} \times 10 \mathrm{~cm}$.
The large carton is $100 \mathrm{~cm} \times 80 \mathrm{~cm} \times 50 \mathrm{~cm}$.
Will 60 small boxes fit into the large carton?

$$
V_{\text {Large }}=100 \times 80 \times 50=400000 \mathrm{cu}
$$

4. Tiki wants to get a new thermos for school. Her old thermos had a volume of $1570 \mathrm{~cm}^{3}$. The new thermos has a radius of 5 cm . How tall should it be to hold the same amount?

$$
\begin{aligned}
v & =\pi r^{2} h \\
\frac{1570}{25 \pi} & =\frac{\pi t}{25)^{2} h} \\
20 & =h
\end{aligned}
$$

b) If her new thermos has a height of 15 cm , what is the radius of the new thermos?

$$
\begin{gathered}
\frac{1570}{15 \pi}=\frac{\pi r^{2}(15)}{15 \%} \\
33.33=r^{2} \\
5.8=r
\end{gathered}
$$

5.8 cm
5. A cylinder has a radius of 40 cm and a height of 45 cm .

Another cylinder has the same volume with a radius of 30 cm . What is the height of the second cylinder?

$$
\begin{aligned}
V_{A} & =\pi(40)^{2}(45) \\
& =72000 \pi \\
\text { note: } V_{A} & =V_{B}
\end{aligned} \quad \begin{aligned}
& V_{B}=\pi(30)^{2} h \\
& 9000 \pi
\end{aligned}
$$

b) If the other cylinder with the same volume has a height of 60 cm , what is the diameter of the second cylinder?

$$
\begin{aligned}
& \sqrt{1200}=\sqrt{r^{2}} \\
& 34.6=r
\end{aligned}
$$

$$
d=69.3 \mathrm{~cm}
$$

Assignment: p273 \#4,7-9,11-15,17-21
*Careful with \#7 the ans is in cm^{3}
*Ans to \#13 is 34

$$
\begin{aligned}
V_{\text {tank }} & =\pi(5.25)^{2}(21.6) \quad \swarrow^{3}=1000 \\
& =1869.399 \mathrm{~m}^{3} \\
& =1869399 \mathrm{~L}
\end{aligned}
$$

We need... 604 L / person for 10000 pere.
80... $604 \times 10000=6040000 \mathrm{~L}$ needed
per day.
What fraction of the day do voe hare?

$$
\begin{gathered}
\frac{1870000}{6040000}=\frac{x}{24 h}<\text { whole day. } \\
x \approx 7 \text { hours }
\end{gathered}
$$

