8.4 Using the Pythagorean Relationship

Warm-up:

$$
\begin{gathered}
25,15,20 \\
5,3,4
\end{gathered}
$$

1. Which of the following are pythagorean triples. (Side lengths create right triangles)
a) $5,6,7$

$$
\begin{gathered}
5^{2}+6^{2}=7^{2} ? \\
25+36 \neq 49 \\
\text { No! }
\end{gathered}
$$

2. Is a 1,1,2 triangle possible?
b) $5,13,12$

$$
\begin{aligned}
& 5^{2}+12^{2}=13^{2} \\
& 25+144=169
\end{aligned}
$$

yes

$$
10,6,8
$$

c) $90,54,72$

$$
\begin{gathered}
54^{2}+72^{2}=90^{2} \\
\end{gathered}
$$

yes

$$
1+1=2
$$

Not possible

$$
a+b>c
$$

Common triples: $(3,4,5),(5,12,13),(8,15,17),(7,24,25),(20,21,29),(11,60,61)$.
Using the Pythagorean Relationship:

Used to find a missing side of a RIGHT triangle when given the other two sides.

Examples:

Find x.

hypotenue.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& b^{2}+10^{2}=x^{2} \\
& \begin{array}{l}
a^{2}+b^{2}=c^{2} \\
b^{2}+10^{2}=x^{2} \\
36+100=x^{2}
\end{array} \quad \text { of the square in "c" } \\
& \begin{aligned}
136 & =x^{2}<^{\text {ale }} \\
\sqrt{136} & =x \\
11.6 & =x
\end{aligned} \\
& 1 n^{2}+v^{2}-15^{2} \quad b^{2}=c^{2}-a^{2}
\end{aligned}
$$

c.

1く・ト・••

$$
x^{2}=15^{2}-12^{2}
$$

$$
x^{2}=225-144
$$

$$
x^{2}=81
$$

$$
x=9
$$

3.

$$
\begin{aligned}
& x^{2}=41^{2}-9^{2} \\
& x^{2}=1681-81 \\
& x^{2}=1600 \\
& x=\sqrt{1600} \\
& x=40
\end{aligned}
$$

4. How much longer is it to walk around the room than diagonally across?

Shorter?, $12-8.94=3 \mathrm{~m}$ shorter
b) If it is walking at a speed of $1.2 \mathrm{~m} / \mathrm{sec}$ diagonally. How fast would it have to walk around to get to the finish in the same amount of time?

$$
\begin{aligned}
& s=\frac{d}{t} \\
& t=\frac{t_{D}}{s}=\dot{t}_{\text {ACONDD }} \\
& 8.94 \neq 14.4
\end{aligned} \quad x=1.61 \mathrm{~m} / \mathrm{sec}
$$

5. Find the length of the legs.

$$
\begin{aligned}
x^{2}+x^{2} & =10^{2} \\
\frac{2 x^{2}}{2} & =\frac{100}{2} \\
x^{2} & =50 \\
x & =\sqrt{50}
\end{aligned}
$$

$$
x=7.07
$$

Assignment p104: \#4-16
Falgebraic approal

