There are two methods to solve a system of equations algebraically:
i. Substitution Method
ii. Elimination Method

I. Substitution Method

Remember an (x, y) par
is a single solution to

- Isolate one variable in one of the equations a system.
- Substitute the expression into the other equation and solve for the remaining variable
- Substitute that value into one of the equations to find the value of the other variable. *the variables should make both equations true

Ex. 1 Solve

$$
\begin{aligned}
& -3 x-9=-4 x^{2}+x-9 \\
& 4 x^{2}-4 x=0 \\
& \underbrace{4 x}_{x=0}(\underbrace{x-1}_{x=1})=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Logic } \\
& A=B \\
& A=C \\
& \therefore B=C
\end{aligned}
$$

Ex. 2 Solve $\begin{aligned} & 6 x^{2}-x-y=-1 \\ & 4 x^{2}-4 x-y=-6\end{aligned} \longrightarrow \underbrace{6 x^{2}-x+1}=y$

$4 x^{2}-4 x-6 x^{2}+x-1=-6$

$$
-2 x^{2}-3 x-1=-6
$$

$\left.\begin{array}{c}-10 \\ 3\end{array}\right\}+5,-2$

$$
0=2 x^{2}+3 x-5
$$

$2 x^{2}+5 x-2 x-5$

$$
0=(x-1)(2 x+5)
$$

$x=1$ or $x=-5 / 2$ or -2.5

$$
\begin{aligned}
& \text { if } x=1 \\
& \begin{array}{c}
6(1)^{2}-(1)-y=-1 \\
6-1-y=-1 \\
5-y=-1 \\
6=y \\
(1,6)
\end{array}
\end{aligned}
$$

$$
\text { if } x=-2.5
$$

$$
6(-2.5)^{2}-(-2.5)-y=-1
$$

$$
37.5+2.5-y=-1
$$

$$
40-y=-1
$$

$$
41=y
$$

or

$$
(-2.5,41)
$$

II. Elimination Method

- Rearrange terms so that like terms line up
- Create opposite coefficients for the variable that occurs only once by multiplying one or both equations by a constant
- Add the equations together to eliminate one variable and solve for the remaining variable
- Substitute that value into one of the equations to find the remaining unknown variable

Ex. Solve

$$
\begin{aligned}
& \text { L Need to eliminate, so male } 6 \\
& 5 x^{2}+3 y=-3-x \longrightarrow\left[5 x^{2}+3 y+x=-3\right] 2
\end{aligned}
$$

$$
\begin{aligned}
& 5 x^{2}+3 y=-3-x \longrightarrow\left[5 x^{2}+3 y+x=-3\right] 2 \\
& 2 x^{2}-x=-4-2 y \longrightarrow\left[2 x^{2} \longrightarrow+2 y-x=-4\right] 3
\end{aligned}
$$

Ex. 4 Is $(2,-5)$ a solution to the following system of equations? \leftarrow Balance both?

yes balanced.

$$
\begin{gathered}
-3(2)^{2}+5(-5)^{2}=112 \\
-3(4)+5(25)=112 \\
-12+125=112 \\
113=112
\end{gathered}
$$

No, not balanced.
\therefore Not a Solution of the system

Ex. 5 Use any method to solve: (Explain why you chose to use that method) *note, hare to eliminate" h "to solve

$$
\begin{aligned}
& d^{2}-2 d+3 h=9 \\
& 5 d^{2}-10 d+h=0 \longrightarrow h=10 d-5 d^{2}
\end{aligned}
$$

$$
d^{2}-2 d+30 d-15 d^{2}=9
$$

$$
-14 d^{2}+28 d=9
$$

$$
0=14 d^{2}-28 d+9
$$

$$
\begin{gathered}
\text { OR ELimination } \\
3 x \Rightarrow \frac{15 d^{2}-30 d+3 h=0}{-14 d^{2}+28 d=9} \\
0=14 d^{2}-28 d+9 \\
\text { contimere }
\end{gathered}
$$

Using Quad. formula ...

$$
\begin{aligned}
d= & \frac{28 \pm \sqrt{(-28)^{2}-4(14)(9)}}{2(14)}=\frac{28 \pm \sqrt{784-504}}{28} \\
& =28 \pm \sqrt{280}>d=1.6
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{aligned}
10 x^{2}+6 y+2 x & =-6 \\
-\quad 6 x^{2}+6 y-3 x & =-12 \\
4 x^{2}+5 x & =6 \\
4 x^{2}+5 x-6 & =0 \\
(4 x-3)(x+2) & =0 \\
x=3 / 4 \text { or } x & =-2
\end{aligned}\right. \\
& \left\{\begin{aligned}
10 x^{2}+6 y+2 x & =-6 \\
-\quad 6 x^{2}+6 y-3 x & =-12 \\
4 x^{2}+5 x & =6 \\
4 x^{2}+5 x-6 & =0 \\
(4 x-3)(x+2) & =0 \\
x=3 / 4 \text { or } x & =-2
\end{aligned}\right. \\
& \frac{\text { if } x=\frac{3}{4}}{2(3 / 4)^{2}-(3 / 4)}=-4-2 y \\
& 2(9 / 16)-3 / 4=-4-2 y \\
& \left(\frac{9}{8}-\frac{3}{4}=-4-2 y\right)^{8} \\
& 9-6=-32-16 y \\
& 3=-32-16 y \\
& 35=-16 y \\
& -\frac{35}{16}=y \\
& (3 / 4,-35 / 16) \\
& \frac{\text { if } x=-2}{2(-2)^{2}-(-2)}=-4-2 y \\
& 8+2=-4-2 y \\
& 10=-4-2 y \\
& 14=-2 y \\
& (-2,-7)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { if } d=1.6 \\
h=10(1.6)-5(1.6)^{2}
\end{array} \quad \begin{array}{r}
28 \\
h=16-12.8 \\
h=3.2 \\
(1.6,3.2) \\
h=10(0.4)-5(0.4)^{2} \\
h=4-0.8 \\
h=3.2
\end{array} \\
& \begin{array}{l}
\text { Assignment: } p 451 \# 1,2,3 a b c e, 4 a b e, 5 a, 6.7
\end{array}
\end{aligned}
$$

Ch8 Systems Page 4

