Chapter 8: Systems of Equations

8.1 Solving Systems of Equations Graphically

A system of equations is two or more equations involving common variables.
The point of intersection of two functions on a graph represents the solution to the system. (an ordered pair that satisfies both equations.)

- Linear-Quadratic Systems

Given a line and a parabola, how many possible outcomes may occur.

No Solution

-no intersection

One Solution

- one point of intersection

Two Solutions

- two points of intersection

Example: Solve by graphing
a) $x-y+1=0 \sim x+1=y$

$y=(x+2)^{2}-3$

- Quadratic-quadratic Systems

How many possible outcomes can occur:

No solution

One solution

two solutions

infinite solutions

Example: Solve by graphing
a) $y=x^{2}+1$

$$
y=\frac{1}{2} x^{2}-4
$$

b) $y=(x+1)^{2}$

$$
a(x-p)^{2}+q
$$

Example:

Sketch two quadratic functions with no solutions.
Describe the necessary conditions for this to occur.

For the function with positive "a", the of must be greater than the otter of

Example:

Given the quadratic graph and its equation, determine the equations of another quadratic that leads to a system with one solution.

Assignment: p435 \#1-3, 6-9 and worksheet

