7.4a Linear Reciprocal Functions
$\frac{1}{1}$ \& $\quad \frac{a}{b} \times \frac{b}{a}=1$

What is a reciprocal?

A product of a number and its reciprocal always equal to 1.
The reciprocal of $n=\frac{1}{n}$, if $n \quad 0$ because $n \times \frac{1}{n}=1$

Find the reciprocal of the following numbers:

10	5	1	$\frac{1}{2}$	$\left(\begin{array}{c}0 \\ 10\end{array}\right.$	$\frac{1}{5}$	1

- What do you notice when you take the reciprocal of large pos/neg numbers?
- What do you notice when you take the reciprocal of small numbers $[-1<x<1]$?

Comparing Graphs of a funtion and its reciprocal

In general, to graph a reciprocal function $\frac{1}{f(x)}$:

1. Graph $y=f(x)$
2. Draw the vertical asymptote (s).

This is the x-intercept because $f(x)=0$, and reciprocal of zero is undefined.
3. Draw the horizontal asymptote.

The value y approaches as $|x|$ approaches infinity. $\quad(y=0)$
4. Label the invariant points.

When $f(x)=1$ or -1
5. Use asymptotes and invariant points to sketch.
(Big \rightarrow Small) When $f(x)>1$, the reciprocal function approaches the horizontal asymptote (Small \rightarrow Big) When $0<f(x)<1$, the reciprocal function approaches the vertical asymptote

Example 1:

Given $f(x)=\frac{1}{2} x-4$
a) Determine $\frac{1}{f(x)}$

b) Determine the horizontal and vertical asymptotes.
c) Graph

1. $\operatorname{Graph} f(x)$
2. Asymptotes

* the x-int of $f(x)$

* 3. Invariant points

4. Sketch $\frac{1}{f(x)}$ going through invariant points and approaching asymptotes

Example 2:

Graph $y=\frac{1}{3-x}$

1) Graph $y=3-x$

$$
112+2
$$

Graph $y=\frac{1}{3-x}$

1) Graph $y=3-x$

$$
y=-x+3
$$

2) Asymptotes?
$x=3$ (Vertical)
3) Invariant pts $x-i n t$.

where $y= \pm 1$
Assignment: p403 \#1ab, 2ab, 3ab, 4, 5ab, 6a, 7, 9ad
