Chapter 7: Absolute Value and Reciprocal Functions
7.1 Absolute Value

Absolute Value - The distance a number is from zero on the number line. The absolute value of the number x is represented by $|x|$.

-3 is 3 units from 0

$$
|-3|=3
$$

3 is 3 units from 0

$$
|3|=3
$$

Ex. 1) Determine each.
a) $|7|=7$
b) $|-5|=5$
c) $|0|=0$
d) $\left|\frac{1}{4}\right|=\frac{1}{4}$
e) $3|-10|=3(10)$
f) $-2|-2|=$

$$
=30
$$

$\left\{\begin{array}{l}\text { Note: When you take the absolute value, } \\ \text { maintain the operation being indicated. }\end{array}\right.$
Ex. 3) Evaluate (follow order of operations treating absolute value similar to brackets)
a) $|3|-|-8|$

$$
3-8
$$

$$
\text { c) } \begin{gathered}
-4\left|-3(2-5)^{2}+6\right| \\
-4|-27+6| \\
-4|-21| \\
-4(21)=-84
\end{gathered}
$$

b)

$$
\begin{gathered}
5-4|7-2| \\
5-4|5| \\
5-4(5) \\
5-20 \\
-15
\end{gathered}
$$

Ex. 4) A bell-hop rides the elevator from the 1st floor to the 6th floor, then down to the End floor, up to the 8th floor, and finally, back to the 1st floor. What is the total change in floors?

$$
|1-6|+|h-2|+|2-8|+|8-1|
$$

$$
|-5|+|4|+|-6|+|7|=5+4+6+7=22 \text { floors }
$$

Ex. 5) A stock starts at a price of $\$ 8.73$ in the morning. It rises to $\$ 10.25$, then tumbles to $\$ 7.97$, and finally closes at $\$ 8.95$.
a) What is the total change in price over the day?

$$
\left.\begin{array}{rl}
|8.73-10.25| & +|10.25-7.97|+|7.97-8.95| \\
1.52 & +2.28+0.98
\end{array}\right)=\$ 4.78
$$

b) What is the net change in price for the day?
net $\Delta=$ closing price - starting price

$$
8.95-8.73=\$ 0.22
$$

Part 1: Assignment: p363 \#1-7 (aces), 8, 11, 12b

$$
\text { Ia }(8,1) \quad(3,1)
$$

$15 \min$

3-8)

$$
y=x
$$

1. Graph $y_{1}=x$ and $y_{2}=|x|$ using a table of values.
$\left.\begin{array}{|c|c|c}\hline x & y_{1}=x & y_{2}=|x| \\ -4 & -4 & 4 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \\ -1 & -1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \\ \hline 3 & 3 & 3 \\ 4 & 4 & 4\end{array}\right\}$ reflected in x-axis 3

Notice that $y=|x|$ is defined by two different rules.

1. $y=x$, if $x \geqslant 0\}$ piecewise function
2. $y=x$, if $x \geq 0\}$ piecewise finctir
3. $y=-x$, if $x<0\}$
4. Graph $y=\left\lvert\, \frac{x}{2}-1\right.$ and $y_{2}=\left|\frac{x}{2}-1\right|$ using a table of values.

x	y_{1}	y_{2}
-4	-3	3
Nat		
-2	-2	2
2		
0	-1	1
2	0	0
2		
4	1	1

Write the piecewise function for the function $\quad \begin{array}{r}y=\left|\frac{x}{2}-1\right| . \\ y=-\left(\frac{x}{2}-1\right) \\ y=-\frac{x}{2}+1, x<2\end{array}$

$$
\begin{gathered}
0=\underbrace{|3 x-6|} \\
0=3 x-6 \\
6=3 x
\end{gathered}
$$

3. Given $y=|3 x-6|$
a) Determine the y and x intercepts $_{2}=x$

Graph
(1) $y=\frac{3 x}{1}-6$
(2) Reflect - y 's in $x-a x+1$
b) Sketch the graph

$$
\begin{aligned}
& x \text {-int: } 2 \\
& y \text {-int: } b
\end{aligned}
$$

Write a piecewise function.

Part 2: Assignment: p375 \#1a,2,5ac, 6ac, 9ac

