Warm-up:
(1) $(5 \sqrt{3}-2)^{2}$
(2) $(\sqrt{2})^{5}$ is equal to...
a) $\sqrt{10}$
b) $5 \sqrt{2}$
c) $4 \sqrt{2}$
d) 32

$$
\sqrt{25}=\sqrt{32}=4 \sqrt{2}
$$

In general, when dividing radicals divide coefficients by coefficients and radicands by radicands

$$
\frac{m \sqrt[k]{a}}{n \sqrt[k]{b}}=\frac{m}{n} \sqrt[k]{\frac{a}{b}}
$$

Ex. Simplify
a) $\frac{\sqrt{28 x^{2}}}{\sqrt{7 x}}=\frac{\sqrt{x \cdot 4 \cdot x \cdot x}}{\sqrt{x x}}=\sqrt{4 x}=2 \sqrt{x}$
b) $\frac{2 \sqrt{54}}{5 \sqrt{24}}=\frac{2 \sqrt{9}}{5 \sqrt{4}}=\frac{x(3)}{5(x)}=\frac{3}{5}$
c) $\begin{aligned}\left.\frac{2 \sqrt{150 n^{3}}}{\sqrt{8 n}} \begin{array}{rl}\frac{\chi \sqrt{75 n^{2}}}{\sqrt{4}}=\sqrt{75 n^{2}}=\sqrt{25 \times 3 \times n^{2}} & =5 n \sqrt{3} \\ \frac{1}{\sqrt{3}} \cdot \sqrt{3} & =\frac{\sqrt{3}}{3}\end{array}\right)\end{aligned}$

Sometimes, the roots do not divide and the expression is left with a radical in the denominator. In this case, rationalize the denominator.

Examples.
a) $\frac{\sqrt{5} \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}}=\frac{\sqrt{10}}{2}$
b) $\frac{5 \sqrt{2}}{2 \sqrt{6}}=\frac{5}{2 \sqrt{3}} \cdot \sqrt{3}=\frac{5 \sqrt{3}}{6}$
c) $\frac{7 \sqrt{32 y}}{5 \sqrt{63}}=\frac{7(4 \sqrt{2 y})}{5(3 \sqrt{7})}=\frac{28 \sqrt{2 y} \cdot \sqrt{7}}{15 \sqrt{7} \cdot \sqrt{7}}=\frac{28 \sqrt{14 y}}{105}=\frac{4 \sqrt{44 y}}{15}$
d) $\frac{3}{\sqrt{y}} \cdot \sqrt{y} \cdot \sqrt{y}=\frac{3 \sqrt{y}}{y} \quad \sqrt{45}=\sqrt{9 \times 5}=3 \sqrt{5}$
e) $\frac{3 \sqrt{135 m^{5}}}{\sqrt{21 m^{3}}}$

$$
\begin{aligned}
\frac{3 \sqrt{45 m^{2}}}{\sqrt{7}}=\frac{9 \sqrt{5 m^{2}} \cdot \sqrt{7}}{\sqrt{7} \cdot \sqrt{7}} & =\frac{9 \sqrt{35 m^{2}}}{7} \\
& =\frac{9 m \sqrt{35}}{7}
\end{aligned}
$$

f) $\frac{1}{\sqrt[3]{3}} \cdot \sqrt[3]{3^{2}}=\sqrt[3]{3^{2}}=\sqrt[3]{9} \quad \sqrt[3]{x^{2}}$

Quiz next class on add/subtract/multiplying radicals
calculators
not ${ }^{\text {allowed }}$ - Natculaturs - Nation

- Writeviens.

